

Komplexe HSM Systeme in Hochenergie-Experimenten am Karlsruhe Institut für Technologie

Dorin-Daniel Lobontu Doris Ressmann

Preslav Konstantinov Karin Schäfer

www.kit.edu

Agenda

- Karlsruhe Institut of Technology
- Steinbuch Centre for Computing (SCC)
- Tape related tasks
- GridKa data and facts
- HPSS monitoring
- Migrating GridKa from IBM Spectrum Protect to HPSS

Karlsruhe Institute of Technology

- Campus South (University ground)
- Campus East (Mobility campus)
- Campus West

- Garmisch
- Helmholz-Institut Ulm

Campus West

Campus Nord

Eggenstein-Leopoldshafer

Campus Ost

Karlsruhe Campus Süd

Steinbuch Centre for Computing

- The Information Technology Center of KIT
- Center for data-intensive computing
- The analysis of large-scale data with high national and international visibility
- An innovative and agile IT service provider at KIT
- 300 employees from 25 nations in 16 departments and research groups

Tape related tasks

- KIT Backup via IBM Spectrum Protect (formally known as TSM)
- bwDataArchive uses High Performance Storage System (HPSS)
- Large Scale Data facility 22 PB in IBM Spectrum Scale (GPFS)
 - Classical Backup via IBM Spectrum Protect
 - Triggers full backup because of small metadata changes
 - Results in Backup duration of several days
 - Backup via GPFS HPSS Interface (GHI) in preparation
- GridKa the German Tier 1 Center of the Large Hadron Collider (LHC)
 - Tape backend used to be IBM Spectrum Protect
 - Migration to HPSS should be finished end of this year

bwDataArchive

Motivation:

- Iong- and safety-term preservation of data from scientific experiments, measurements, analysis and simulations
- central and flexible system
 - unify all isolated islands of data
 - well scalable in terms of data transfer and amount of data

Goals:

- to offer an easy-to-use system to a non IT-confident scientific community
- to identify and implement the safety-related aspects of a long-term storage
 - background data integrity verification
 - end-to-end data protection
 - avoid data corruption at the transfer time

GPFS HPSS Interface (GHI)

- 22 PB GPFS space to Backup
- In ISP small metadata change triggers full backup
 - Results in Backup duration of several days
- GHI should not have such behavior
- GHI first setup
 - HPSS test system, GPFS production system
 - Dependencies between update cycles (HPSS, GHI and GPFS)
- GHI second setup
 - Productive GPFS -> disaster Recovery GPFS (fewer disk space with HSM functionality to HPSS)

Normal operation

- User access to production system
- Transparent to user: migration to disaster recovery system
- Transparent to user: HSM like migration to HPSS
- Disaster recovery system holds only highly accessible data

Update Production GPFS

Limited user access to disaster recovery system
Access times might be slow if data has to be restored
After downtime the production system will be synced again

- Normal operation for users
- Connection to disaster recovery system will be stopped
- HPSS Update independent to the user
- After the update sync between production and disaster recovery system

Data and analysis center for particle and astroparticle physics

A cornerstone of the Worldwide LHC Computing Grid (WLCG)

Integral part of the LHC data processing chain

Global Effort → Global Success

Results today only possible due to

a Higgs Boson (but which one ...?) Historic Milestone but only the beginning

Observation of a new particle consistent with

GridKa Building Blocks

20 year nation Tier-1 Centre for LHC
GridKa-Ressourcen in 2023

- ~ 61.000 CPU cores, 56 GPUs
- 99 PB Online Storage (6500 HDDs)
- 135 PB Offline Storage (Tapes)
- 400 Gbit/s Network connection (2x100 to CERN + 2x100 to DFN)
- GridKa in global Scale
 - ~15% all Tier-1 CPU, Disk & Tape Ressource <u>worldwide</u> in WLCG

Computing at SCC is <u>much</u> more...

GridKa – LHC Tier 1

- support for particle physics computing
- stakeholders: 4 LHC experiments and several others
- Currently stored data: 70 PB, 392 Mil files

~750k CPU cores

- 600PB storage
- > 2M jobs / day
- 10-100Gb links

Offline Migration ISP to High Performance Storage System (HPSS)

Long term team effort started in 2020

New Tape Connection High Performance Storage System (HPSS)

Writing files to tape

- Files are transferred from dCache pool providing checksum
- Written to HPSS disk buffer
- Checksum verification
- HPSS: tape writes are initiated in file aggregates by directory order
- Up to 100 files <= 10 GiB in one directory collected in aggregates

Reading files from tape

- Files read requests collected for file aggregates
- Using full aggregate recall mechanism (FAR)
- Files are read from HPSS disk buffer into the dCache pool
- Checksum verification is done by dCache

Migrate GridKa data from TSM to HPSS setup

- use only one drive per file family to write data on tape
- use read-optimized aggregates
- aggregate as many files as possible
 - Max bytes in aggregate
 - Max files in aggregate
- COS Migration order

5000 Directory

300GB

Monitoring

- HPSS cache
 - total # files and space used
 - purable # files and space
 - # files and space used to be migrated
 - # files and space staged
 - I/O rates
- Tape Drive rates
- Cartridge transfer rates
- # drives used in parallel by experiment
- Visualisation using Grafana
- rsyslog sends data to LogStash/ELK/Kibana

HPSS Monitoring

Steinbuch Centre for Computing SCC

KIT @ DLR conference 2023

Migrate GridKa data from TSM to HPSS issues

HPSS Disk Cache throughput issue

- NetApp E5700 120 SAS HDDs
 - tested throughput outside HPSS 12GB/s (50% read, 50% write)
- HPSS cannot get more than 6 GB/s
- Tried different configurations
 - 1 DDP with 26 volumes
 - 6 DDPs with 2 volumes each
- Migration to tape is adversely affected
- We had to reduce maximum number of tape drives for migration in order to get better data rate per tape drive
- Replacement of spinning disks by SSDs increased the drive rate to its maximal rate

Migrate GridKa data from TSM to HPSS issues

Steinbuch Centre for Computing SCC

HPSS Recall Tests - Client

HPSS FUSE

Quaid

- PFTP:
 - proven client
 - one more component involved: pftp_server
- HPSS API:
 - Endit

rewrite ENDIT dCache Interface to TSM to access HPSS

- started implementation for reading from HPSS
 - to be able to read the migrated files
- the interface will wait
 - either for a number of files to be read from hpss
 - or for a specific time interval
 - configurable parameters
- will sort the files on cartridge basis
- will sort the files on aggregate basis
- will start a staging process per aggregate using FAR
 - only one file from an aggregate

- Successfully read 42314 files from 10 tapes in less than 24 hours with 10 drives available.
- The files were in 474 aggregates so there were never more than that number read requests in HPSS at the same time.
- Aggregates not staged in linear tape order; looks like TOR does use RAO info and schedules whole aggregates as a unit.

GridKa Transfer rates

Max write rate (disk -> tape): ~2.0 GB/s (~390 MB/s per tape drive)
8 tape drives used

Max read rate (tape -> disk): ~4.0 GB/s (~380 MB/s per tape drive)

14 tape drives used

Thank you for your attention

